The neurophysiology of decision-making as a window on cognition
A Variable Viewing Duration

- **Motion**
- **Targets**
- **Fixation**
- **Saccade**
- **Time**
- **Experimenter controls viewing time**

B Response Time

- **Motion**
- **Targets**
- **Fixation**
- **Saccade**
- **RT**
- **Monkey controls viewing time**
The probability of correct responses decreases as the coherence level increases. This is evident in graph A, where the probability correct is plotted against the coherence level on a logarithmic scale.

Graph B shows the response time in milliseconds as a function of the motion strength (percentage coherence). As the motion strength increases, the response time decreases, indicating faster response times for clearer stimuli.
The graph shows the position of a particle over time, with two critical points labeled as "1" and "2". The graph indicates a positive or negative criterion to answer the question. The equation $t(c) = \frac{B}{k_c} \tanh(Bkc) + t_{sd}$ is given, where $t(c)$ is the time, B and k_c are constants, and t_{sd} is the spike duration.
\[p(c) = \frac{1}{1 + e^{-c}} \]

(2)

The probability distribution function for the parameters is used in the following scenarios to evaluate the accuracy of the models. The function is expressed as a sigmoid function, which maps values to a range between 0 and 1. This function is particularly useful in binary classification problems, where it can be used to predict the probability of an event occurring. The sigmoid function is defined as:

\[p(c) = \frac{1}{1 + e^{-c}} \]

where \(c \) is the parameter of interest. This function ensures that the output is always between 0 and 1, making it suitable for probabilities. In the context of the models described in the document, this function is used to assess the performance of the algorithms in predicting outcomes accurately.
A.

B.

C.

51.2% coh
25.6%
6.4%
0.0%