Consciousness as a Decision to Engage

Michael N. Shadlen and Roozbeh Kiani

Abstract
Consciousness encompasses a variety of functions and properties, such as awakening, awareness, and subjective aspects of both perception and volition (e.g., qualia and authorship, respectively). It remains to be seen whether these diverse functions are related to one another through common neural mechanisms, and if so how. Here, we advance the thesis that the neural mechanisms that give rise to conscious states share features with neural mechanisms that underlie simpler forms of decisions. The neurobiology of decision-making provides detailed insight into how the brain deliberates and reasons from evidence to make choices. The underlying mechanisms, mainly studied in animals, could support a variety of complex cognitive functions that probably operate independently of many aspects of consciousness. For example, many complex decisions in humans rely upon wakefulness but not upon awareness or authorship. In animal studies, decisions are typically embodied: they can be described as selection among possible actions. By substituting “circuits” for “actions” in the preceding phrase, we generalize from “deciding to do” to “deciding to consider” or, more generally, “deciding to decide to...” This is an appealing notion from the perspective of brain evolution, because it allows us to recognize ideation as an elaboration of a simpler sensory-motor design. We propose that many of the functions of consciousness are simply ways of engaging the environment. Thus consciousness might be mediated by (non-conscious) decisions to engage, as in awakening, or to engage in a certain way, as when attaching narrative to action. Although the neural mechanisms underlying “decisions to engage” are unknown, they are likely to involve intralaminar (and matrix) thalamus and processes that “decide” to turn other circuits on. This idea invites an analogy between the functions of brain regions that project to

M.N. Shadlen (✉)
HHMI and Department of Physiology and Biophysics, University of Washington, Seattle, WA 98115, USA
e-mail: shadlen@u.washington.edu

matrix thalamus, including the “default system”, and the role of parietal cortex in perceptual decisions. While highly speculative, we think “decision to engage” provides a biologically plausible and computationally coherent hypothesis about the neural correlates of consciousness.

1 Introduction

At the time of this writing, it seems safe to state that neuroscience has thus far failed to provide an answer to the question of how the brain gives rise to consciousness and conscious awareness. Although this essay does not provide an answer to this question, we hope it will give some indication of how to go about finding one. Our goal is to identify a framework for addressing at least some of the problems that arise. There may be a kernel of a theory of consciousness here, but we do not believe it is coherent – yet. If we are correct, and the neurobiology of decision-making is closely tied to the neurobiology of consciousness, there will be plenty of facts that will help to shape such a theory.

Our perspective brings together several ideas that might seem separate: the neurology of arousal and its disorders (Laureys 2006; Laureys et al. 2004; Posner et al. 2007), the neurobiology of decision making (Gold and Shadlen 2007), the default system (Raichle and Snyder 2007; Raichle et al. 2001), non-conscious cognition (e.g., Dijksterhuis et al. 2006; Kouider and Dehaene 2007), a bit of philosophy (Merleau-Ponty 1962), and emerging ideas about intralaminar and matrix thalamus (Jones 2001; Schiff 2010).

It may be useful to consider two broad characterizations. One is from the perspective of neurology, which tends to view the phenomenon as intrinsically linked to arousal. Consciousness refers to a state of wakefulness with organized interaction with the environment, where organized implies behavior more complex than a reflex. Consciousness is absent in sleep, coma, general anesthesia and generalized seizures. It is evanescent in stupor, perhaps less so in obtundation, and latent in the minimally conscious state. It is present – although one might say it is impaired – in confusion states with diverse forms and etiologies (delirium, toxic/infection, paraneoplastic, and psychiatric1). We will refer to this characterization as N-consciousness (for neurology).

The other characterization is from the philosophy of mind, which identifies a collection of mental phenomena sharing subjective, personal features. These include perceptual awareness, self-awareness, volition with awareness (i.e., authorship), a sense of free will, a sense of what it is like to be, a capacity to report narrative, introspection, and so on. Even this incomplete list portrays the daunting topic that

1We lack strong convictions about whether fugue states and disorders of thought, such as schizophrenia, belong in this list. We suspect these disorders will involve distinct mechanisms, which are not of the type discussed here.
makes consciousness so mysterious and special. We might argue about whether animals possess such capacities, but no one doubts that they have wakefulness and even states of confusion. We will refer to this characterization as P-consciousness (for philosophy).
2

These conceptual perspectives lack obvious intersection, yet our central thesis is that similar neural mechanisms, computations and structures underlie many if not all of these forms of consciousness. The common feature is a decision to engage (Shadlen and Kiani 2007). Waking from sleep is a decision to engage the environment, and acting with awareness of purpose (authorship or will) involves a decision to engage a form of narrative associated with potential reportability. Thus we propose that neural mechanisms that give rise to conscious states share features with neural mechanisms that underlie simpler forms of decisions.

There is one important assumption that deserves mention at the outset. It is that a great portion of higher cognitive processing occurs without P-consciousness, that is, without awareness and without a capacity to report. We cascade actions, juggle tasks, maintain goals and highly structured cognitive sets, interact socially, navigate in artificial environments with objects that are not part of our bodies, and so on, often without the aid of P-consciousness. The topic of non-conscious processing is difficult to study, but there are some tantalizing and beautiful studies (e.g., Christoff et al. 2009; Dehaene et al. 2006; Kouider and Dehaene 2007; Lau and Passingham 2007). What seems remarkably obvious to a neurologist is that patients with disorders of higher brain function (i.e., cognitive loss) tend to miss mainly the features of their mental lives that live below the radar of consciousness. It appears that the conscious acts survive. Indeed patients exploit P-consciousness to rescue cognitive functions, much like the deliberate coping movements that are so common in the partially paralyzed.

We will return to this point, because we suspect that the neural mechanisms that give rise to decisions to engage (in certain ways) also play a role in these non-conscious functions. They too make use of decisions to engage in certain other ways.

2 Why View Consciousness as a Decision to Engage in a Certain Way?

There are at least two reasons to adopt this perspective. First, the formulation is already consistent with at least some aspects of both N- and P-consciousness. This is almost a matter of definition for N-consciousness. Disorders on the spectrum of coma-to-wakefulness are distinguished by a threshold for processing an external cue, such as a sound or tactile force, to engage the environment in a certain way. Reflexive withdrawal is a way that does not require consciousness. Just about

2Not to be confused with Ned Block’s “phenomenal” consciousness (Block 2005).
anything sustained, organized and not pathologically stereotyped\(^3\) is evidence for
wakefulness, hence N-consciousness.

In sleep, our brains monitor the auditory environment for the sounds that should or
should not alert us, what psychologists call a “Go vs. No-go” decision. For example,
our brains choose “No-go” for unimportant sounds, like the rustling or snoring of
a partner, the music or television that was on when we fell asleep, neighbors, car and
train sounds, crickets at night and much birdsong at dawn. Our brains choose “Go”
when a fire alarm rings, a child cries, or birds call at the right time or in some complex
combination with other sounds at roughly the right time. Many a sleep-deprived
mother will respond to the baby’s cry but not to the tornado alarm.

Some features of P-consciousness clearly involve decision processes. Consider
the spectacular demonstrations of so-called change blindness (Rensink 2000; Simons
and Chabris 1999). In one famous example, a gorilla walks through a small group of
students who are throwing and catching balls. Viewers who are instructed to count
the throws of the students wearing white shirts, say, often fail to see the gorilla. They
lack awareness of the gorilla, even when he faces the camera and beats his chest. This
is not because the eye and visual cortex have failed to represent the gorilla. It is
because the brain is engaged in a demanding task. A non-conscious process has
decided to ignore rather than explore data in visual cortex corresponding to the
gorilla. It has decided to engage the counting problem more fully. This is an example
of an exploration vs. exploitation decision (Cohen et al. 2007).

Our view is that consciousness is mediated by decisions to engage, but not all
decisions to engage require or imply consciousness. Again, this is based on the
conviction that many sophisticated cognitive functions transpire without the aid of
P-consciousness. Presumably such processes also involve exploration-exploitation
decisions, to pick just one example of a decision to engage. Thus, we view conscious-
ness as a decision to engage in a certain way, or set of ways. These certain ways are
likely to touch on a capacity to report, to attach narrative with episodic context (e.g.,
before and after, place and situation). As a field, we lack an understanding of the
circuits that mediate these “certain ways.” But we suspect they are not qualitatively
different from brain circuits involved in other behaviors, which are better understood.

The link between consciousness and decision-making provides an opportunity
to ground consciousness in neurobiology. Over the past 15 years, the neural
mechanisms underlying simple decisions have begun to be elucidated. These
include simple perceptual decisions (Gold and Shadlen 2007; Romo and Salinas
2003; Schall 2001; Uchida et al. 2006) and value-based and social decisions
(Glimcher 2003a, b; McCoy and Platt 2005; Sugrue et al. 2005). Some of the key
principles are explained in the next section. The connection to decision making
inspires hypotheses and guides the study of neural mechanism. It grounds the
enterprise, simplifies it in some ways, and exposes deficiencies in the current
emphasis on neural correlates of consciousness. That said, it offers more promise
than substance.

\(^3\)Certain stereotyped movements occur in persistent vegetative states, whereas others are hallmarks of epileptic seizures.
3 Neural Mechanisms of Decision Making

The remainder of this essay has a dual purpose. The first is to provide a highly selective review of some essential principles of the neuroscience of decision making—just enough detail to support the contention that there is real neuroscience here. At the very least, we wish to reassure the reader that, by tying consciousness to the neurobiology of decision-making, we are not simply relegating consciousness to another mysterious function. We do not pretend that decision making is a mature field, however. The principles and even the “facts” are not fixed, and where they appear to be so, they may be less general than we would like to believe. The second purpose is to expose tentative extensions to what is known and even more tentative connections to other areas of neuroscience. These comprise the short sections below, which describe the “intentional framework” and the problem of circuit selection.

Figures 1 and 2 show two types of tasks used in our laboratory for the study of decision making. The first is a simple perceptual decision. A monkey (or human) views a movie consisting of dynamic random dots and must decide whether the net direction of motion is to the left or right. Most of the decisions are very difficult because the stimulus consists mainly of dots appearing only briefly at random locations within the display aperture. Only a small fraction of the dots undergo displacement and then only to disappear. This fraction, termed the percent coherence, controls the difficulty of the discrimination. There is no actual motion to track in such a display: no dots traverse the display over extended time. The decision-maker must accumulate brief pieces of momentary evidence bearing on the two alternative hypotheses. In this sense, this simple task has more in common with cognitive decisions than with problems in perception, which rarely involve accumulation over time of independent samples of momentary evidence.

The random-dot motion task is useful for the study of decision making because so much is known about the neurobiology. Neurons in the visual cortex extract and represent the momentary evidence. Such direction-selective neurons respond to light when it is presented in a part of the visual field, termed the receptive field. The designation “direction selective” implies that the neuron responds more when motion is in one direction than in the opposite direction. Different neurons prefer different directions. The neurons that are most informative for this task are in a part of the visual cortex called MT/V5.\(^4\) Properties of these neurons are summarized in a recent review (Born and Bradley 2005).

Four features of the MT neurons are important. (1) The intensity of the neural response, measured as a firing rate (spikes per second), is stronger when the random dot motion is in the neuron’s preferred direction and when the percent coherence is greater. (2) There is a response even when the stimulus is purely random dots, without any net motion, termed 0% coherence. (3) The response itself is noisy, meaning that an estimate of the firing rate over a brief epoch, even from hundreds of

\(^4\)MT stands for middle temporal, the name of the sulcus in the new world monkey where the area was first discovered (Allman and Kaas 1971).
Fig. 1 Neural mechanism of a decision about direction of motion. (a) Choice-reaction time version of the direction discrimination task. The subject views a patch of dynamic random dots and decides the net direction of motion. The decision is indicated by an eye movement to a peripheral target. The subject controls the viewing duration by terminating each trial with an eye movement whenever ready. The gray patch shows the location of the response field (RF) of an LIP neuron. (b) Effect of stimulus difficulty on choice accuracy and decision time. Solid curves are fits of a bounded drift-diffusion model, which accounts simultaneously for choice and decision time. (c) Response of LIP neurons during decision formation. Average firing rate from 54 LIP neurons is shown for three levels of difficulty. Responses are grouped by motion strength and direction of choice, as indicated. Left graph: The responses are aligned to onset of random-dot motion and truncated at the median reaction time. These responses accompany decision formation. Shaded inset shows average responses from direction-selective neurons in area MT to motion in their preferred and anti-preferred directions (solid and dashed traces, respectively). After a transient, MT neurons respond at a nearly constant rate. The LIP firing rates approximate the integral of a difference in firing rates between MT neurons with opposite direction preferences. Right graph: The responses are aligned to the eye movement. For T_{in} choices (solid curves), all trials reach a stereotyped firing rate before saccade initiation. We think this level represents a threshold or bound, which is sensed by other brain regions to terminate the decision. (d) Responses grouped by reaction time. Only T_{in} choices are shown. Arrow shows that the stereotyped firing rate occurs ~70 ms before saccade initiation (adapted with permission from Gold and Shadlen 2007; Roitman and Shadlen 2002; Shadlen et al. 2006)
neurons, is highly variable. (4) The neurons respond to the visual information with short latency and they stop responding when the stimulus is not present. The importance of features 1 and 2 is that the evidence these neurons provide for decision making is graded. The importance of feature 3 is that the evidence is unreliable. Indeed it is possible for the left-prefering neurons to respond more than the right-prefering neurons, even when the motion is rightward, and thus lead to an error of perception. The fourth feature indicates that there is no build up or accumulation and no memory of the past. When the motion is on, the neuron responds at a constant (albeit noisy) rate (see Fig. 1c, gray inset). These are neurons that keep up with a changing world.

Fig. 2 Probabilistic categorization task. (a) Task sequence. Four shapes are presented sequentially on the computer monitor near the center of gaze. After a brief delay period, the monkey makes an eye movement (saccade) to either the red or green choice target. During neural recording, one of the choice targets was in the response field of the neuron. The shapes are selected randomly in each trial from a larger set of ten (inset). The reward is determined probabilistically by summing the weights associated with the four shapes. The sum is the logarithm of the odds that the red target will be the one rewarded on that trial. (b) Performance. The fraction of red choices is plotted as a function of the logLR conferred by the four shapes in favor of red. Curves are logistic fits to the data. Only trials that have probabilistic reward (P ≠ 1 or 0) are included in this graph. (c) Effect of individual shapes on choice. The leverage of each of the ten shapes on the probability of a red choice was inferred using logistic regression, which is the contribution that the shape has on the log10 of the odds of a red choice. These values are plotted as a function of the assigned weights. Movie example trials from the experiment, along with neural recordings, can be viewed at http://www.nature.com/nature/journal/v447/n7148/suppinfo/nature05852.html (adapted with permission from Yang and Shadlen 2007)
In short, the MT neurons supply the momentary evidence to the decision. The better the evidence, the more likely the decision will be correct and the faster it will complete. But the MT responses do not represent the decision outcome or its formation. They do not represent the state of the decision once it is made or the accumulation of evidence leading to this state. If the monkey must hold its decision in working memory after the stimulus has been turned off, the MT neurons are no longer informative, yet the decisions are unaffected.

Neurons in the association cortex are different. Their responses can linger for seconds, even tens of seconds. Like visual neurons, they respond only under the right conditions, and the intensity of their firing rates represent an amount of something, but it is often difficult to say what. That depends on what kind of information they receive and to what kinds of neurons they project. For neurons in the lateral intraparietal cortex (area LIP), the input is from visual cortex and the output is mainly to structures that control eye movements or the focus of spatial attention (Andersen 1995; Andersen and Buneo 2002; Bracewell et al. 1996; Colby and Goldberg 1999; Mazzoni et al. 1996). They are well positioned to convert the stream of momentary evidence, ascribed to MT neurons, into a quantity that is used to make the decision termed a decision variable and to represent its outcome.

Neurons in LIP have spatially selective persistent neural activity. Like MT neurons, there are restricted regions of the visual field that support responses and other regions that do not. We use the term response field (instead of receptive field) because the LIP response is affected both by visual targets and a plan to make an eye movement or shift attention to that location. In contrast to MT, the responses of LIP neurons persist in the absence of continuous visual stimulation. And while they are associated with a plan to make an eye movement, they do not obligate an immediate movement.

We believe such selective persistent activity holds the key to understanding higher cognitive function, its emergence in evolution and its impairment in disease, because our most cherished mental functions require that neural computations can transpire a time frame that is (1) not governed by immediate change in the environment and (2) not tied to immediate change in body musculature. Such freedom from immediacy probably arose as the cortical mantle expanded, thereby inserting contingency into the basic sensory-motor design. We will return to this theme below.

LIP neurons contribute to decision formation on the task illustrated in Fig. 1a. During decision formation, the firing rate of these neurons represents the accumulation of momentary evidence in the visual cortex. As shown in Fig. 1c, the accumulation rises or falls depending on the direction and strength of the motion. These averages belie the tremendous variability in firing rate from trial to trial. On a single trial, the firing rate would resemble the path of a particle undergoing drift-diffusion or biased random walk. On each trial, the LIP firing

3We are ignoring the small modulation of sensory neurons associated with choice (Britten et al. 1996; Celebri and Newsome 1994). In some settings, part of this modulation could represent the outcome of the choice (Krug 2004; Nienborg and Cumming 2009).
rate represents the running accumulation of the momentary evidence they receive from the neurons in MT. Since this momentary evidence is variable, the accumulation resembles Brownian motion of a particle, hence the analogy to diffusion and random walks (Churchland et al. 2011).

When the firing rates of LIP neurons reach a critical level, the decision process halts (Fig. 1d). If the task is set up to study both choice and reaction time, then the stopping time results in a behavioral outcome – the reaction time (Fig. 1b). If the stimulus is presented for a long time, or if the experimenter imposes a delay period after turning off the motion stimulus (i.e., a memory-delay), then there is no direct behavioral manifestation of the stopping, but we have shown that it occurs (Kiani et al. 2008). The brain reaches a commitment and ignores additional evidence.

If, during the delay period, the monkey is allowed an opportunity to opt out of the left-right task to obtain a small but certain reward, it does so when it is less likely to choose the correct motion direction. Even for repetitions of identical stimuli, monkeys opt out when they are more likely to make an error. Importantly, the firing rate of LIP neurons is nearer the neutral level when the monkey chooses this low confidence option. The firing rates encode a degree of confidence, that is, the probability of answering correctly (Kiani and Shadlen 2009). These and other observations suggest that the firing rates of neurons like those in LIP do not represent quantities associated with stimuli or actions per se, but are best articulated using the language of probability, value, utility, and costs – terms associated with decision theory.

Such neural computations are key components of any conscious decision or plan of action, although we can say little about the monkeys’ state of awareness in our experiments. The confidence study shows that the brain computes quantities that support a form of meta-cognitive reasoning about the degree of certainty in a decision, but the observation does not imply that the monkey is aware of the process (but see Hampton 2001; Kornell et al. 2007; Smith et al. 2003). That said, the process that transpires once the sure-target option is made available resembles a decision to report about the state of another mental process – here, the decision that occurred a second or so ago during stimulus viewing. Again, we do not believe it is possible to ascertain whether this decision to engage the sure-target in this way is associated with awareness. A more rewarding speculation is that the mechanism exposed in these experiments resembles the ones in our own brains when we engage in a way that we experience as being consciously aware. Using this idea, we can exploit animal models of cognition to study the neural mechanisms of human consciousness. We need not resolve the question of “what it is like” to be a monkey (Nagel 1974).

Another experimental observation that supports the representation of probabilities by LIP neurons comes from the probabilistic categorization task shown in Fig. 2 (Yang and Shadlen 2007). In this task, the monkey must decide between a red and a green target. One or the other will render a reward on a random half of trials. On any one trial, however, the probability of “reward at red” is governed by a set of four shapes, shown sequentially on the video monitor. These shapes are drawn randomly (with replacement) from a larger set of ten, half of which support
“reward at red” by varying degrees. The other half support “reward at green” by the same varying degrees. The experiment tests whether the monkey can reason from the probabilistic evidence and make the better choice, based on the four random shapes shown on any one trial. This task is quite challenging. Although there is a better choice on any one trial, there is no guarantee that selecting it will lead to reward, because the reward is ultimately rendered probabilistically. After training, however, monkeys learn this task (Fig. 2b) and that some shapes are more reliable predictors than others (Fig. 2c).

The neural responses from this task are best appreciated by viewing movies from the experiment.6 They show the same type of LIP neuron studied in the motion experiment. Here, the red or the green choice target is in the neuron’s response field. What is immediately evident in the movies is that the neuron performs a running sum of the positive and negative support from the shapes. A more quantitative analysis reveals that the firing rate is proportional to the logarithm of the ratio of probabilities (the log-likelihood ratio or log-odds ratio), which is an intuitive solution. If the probabilities are equal, then the ratio is 1 and log(1) = 0. If the probability favors the target in the response field, then the ratio exceeds 1 and the log is positive, whereas if the probability favors the other target, then the ratio is less than one and the log is negative. Moreover, if the neural response represents a logarithm of a probability ratio based on the first shape shown in the trials, then when a second shape arrives, it is sensible to simply increment or decrement the response by the new log-likelihood ratio. That is what you can hear in the audio track of the movies.

This brief survey exposes four principles of neural function in the service of decision-making. (1) The response can evolve gradually in time to represent the accumulation of evidence from multiple sources in time. (2) The mechanism includes a termination rule, that is, a criterion for finishing the decision. This might be based on the amount of evidence, the passage of time as in a deadline, or a computation involving value, costs and so on. (3) The computations bear resemblance to probabilistic inference. The general importance here is that it allows neurons to use spike rate to represent intensities that are loosely coupled to “degree of belief in…” or “likelihood that…” or “expected loss if…” (4) The neurons associated with decision formation defy classification as sensory or motor. They are influenced by sensory stimuli and their responses probably influence motor function, but they respond without sensory input and they do not obligate a movement. They lie at the nexus of sensory processing and motor planning.

4 Intentional Framework and Circuit Selection

The fourth principle brings us back to the main focus of the essay. It inspires most if not all of the studies of decision-making in our lab, and it helps us see beyond this one brain area. We assume that area LIP is not particularly special. We observe

6http://www.nature.com/nature/journal/v447/n7148/suppinfo/nature05852.html
decision-related activity in LIP because the monkeys are trained to communicate their decisions with an eye movement. LIP is well suited for decision making in these tasks because it receives input from visual cortex and because its main output targets are structures that control eye movements. Unless LIP is special, it seems likely that decision formation will be evident in other structures that are tied to intention or planned actions, or more generally to the selection of neural circuitry that controls a behavior. We refer to this architecture as an intentional framework, to contrast it with the more representational framework (Shadlen et al. 2008).

There is some support for this idea. The parietal areas that neighbor LIP receive mainly visual information, but they target premotor cortical areas devoted to other motor functions. For example, the medial intraparietal area (MIP) projects to regions that control reaches to targets, and the anterior intraparietal area (AIP) projects to regions that control hand posture during grasp. It is tempting to speculate that these areas do something very much like LIP. They operate on the stream of activity from the visual cortex and construe it as evidence in support of a proposition. For LIP, the proposition is not really about direction of motion but ultimately about which eye movement to make. Indeed, it is already known that MIP behaves similarly to LIP when the monkey communicates its decision by touching a spot on a touch-screen device (Andersen and Buneo 2002; de Lafuente et al. 2009; Scherberger and Andersen 2007; Snyder et al. 2000). For AIP, the stream of activity bears on geometry (Janssen et al. 2008), but it is perhaps more apt to describe the responses in terms of a possible grasp posture (Cisek 2007).

An obvious shortcoming of the intentional view is that it would appear to relegate all of ideation to motor planning. A natural objection to the preceding paragraphs is as follows. The monkey may be deciding about where to move its eyes, but I, as a human, decide about the motion, independently of what action or word I would use to communicate my decision, indeed whether I communicate it at all. We agree that ideation does not necessitate action. Nonetheless, we believe the essential features of abstract ideation are visible in the sensory-motor decision mechanisms we study. Figure 3 illustrates a simple “abstract” decision. The subject decides the direction of motion without knowledge of the motor response required to indicate an answer. In the epoch during motion viewing and the onset of the colored choice targets, the monkey forms and remembers a decision about motion, not about the next action. Neural circuits devoted to planning a particular action do not reflect accumulating evidence (Gold and Shadlen 2003, 2007). Instead, the brain must decide on a plan to make another decision: to make an eye movement to one or another target based on color. The key to abstraction is to view decision making not as information bearing on an action but on the selection of circuitry that mediates another decision.

Indeed, the larger cortical mantle might support higher cognitive function in humans by allowing us to make decisions about decisions about decisions about . . . decisions to do something. It is not hard to see the elements of symbol manipulation in the example of Fig. 3. By cascading association areas that do not project to motor structures but instead to other association areas, we can imagine the basis of much more complexity. For example, we can appreciate the layers in performing an
action to achieve a goal, in imitation of another’s actions, in construing from another’s action the goal that led to the other’s action, in mirroring this goal – steps toward a neurobiology of “theory of mind.”

The intentional framework has much in its favor. This is not the place to expound all of its virtues, but as this meeting takes place in Paris, it is a pleasure to mention that the framework was anticipated in the writings of Maurice Merleau-Ponty. He regarded vision not as inference on visual impressions (representation) but as answers to more purposeful interrogations of the environment (Merleau-Ponty 1962). The panorama to the blind man is not the sequence of vibrations from the stick to the hand but answers to questions about obstacles, the ground surface, steps, cliffs, walls and so on.

Much of the motivation behind many mainstream theories of perception and consciousness in neuroscience is driven by over-enthusiasm for the representational framework. It leads to bizarre solutions that elevate agnostic representations of information to the status of perception and awareness by oscillating it, synchronizing it or enhancing its power spectrum in some frequency band. Even if such measurements were to occur reliably with the phenomena they supposedly explain, by what mechanism do they arise? What brain structure decides to wiggle some part of the representation and thus render it available for conscious awareness?

The change blindness demonstrations underscore the inadequacy of neural representation to explain perception. The unseen object (e.g., the gorilla among the ball players) is represented in visual cortex with greater amplitude than many low-contrast but highly visible objects.
5 Circuit Selection and Configuration

The action of neurons in LIP is not to move body parts but to influence other neurons in the brain. LIP influences eye movements by guiding the selection of circuits in the frontal eye field and superior colliculus. Some other brain structure probably makes a decision that the context is befitting and selects the appropriate LIP circuits to construe evidence from visual cortex as bearing on the salience of potential saccade targets (and not other items present in the visual field). Indeed the circuit must also be configured so that the evidence is compared in a sensible way (e.g., rightward direction sensors from part A of the visual field provide support for LIP neurons that represent part B of the visual field).\(^8\)

The mechanism underlying circuit selection is unknown. We believe it is among the most important problems in systems neuroscience, in part because of its connection to the neurobiology of consciousness. A decision to engage is simply that: evaluation of evidence leading to turning on another circuit and configuring the flow of information – for example, so that the new spot of activity in the primary visual cortex gets inspected and identified as a gorilla (or not).

The idea is not that all such operations lead to conscious awareness but rather that the ones that do so use this mechanism to engage particular circuits. A wide variety of cognitive functions requires that one operation, naturally construed as a decision, leads to the activation of one or more of a larger set of circuits. We believe this can occur without consciousness and does not necessarily lead to conscious awareness, as in the perceptual decision tasks, when contextual information induces clusters of neurons in LIP to represent the integrated evidence from the visual cortex. In this view, the N-conscious processes are those that allow the brain to make more non-conscious decisions about what else to engage, whereas the P-conscious processes are decisions to engage in certain ways, most prominently for communicating, pointing to another – that is to say, reporting.

6 Some Candidate Structures for Decisions to Engage

Several brain structures emerge as potential targets of inquiry. When we consider areas of the brain that are involved in arousal, the midbrain reticular formation and the intralaminar nuclei are at the top of the list. These are the sites that Schiff and colleagues targeted in their successful restoration of consciousness to a severely impaired patient (Schiff 2010; Schiff et al. 2007). It is now recognized that intralaminar nuclei make different types of connections with the cortex than the rest of the thalamus. Instead of targeting layer IV, they target superficial layers and tend to arborize more extensively. This pattern is also evident in a class of neurons.

\(^8\)For present purposes, we are lumping circuit selection and configuration. It is the former that has the clearer connection to decisions to engage.
outside the intralaminar nuclei that share certain molecular markers. These neurons and the intralaminar nuclei comprise the thalamic matrix (Jones 2001). One intriguing idea is that these matrix neurons play a role in cortical circuit selection. Support for this view might be adduced from a recent paper from M. Sherman and colleagues (Theyel et al. 2009).

Other cortical areas are likely to play a role in circuit selection. As mentioned above, such decisions about what to make decisions about need not invoke P-consciousness. Presumably executive control arises in a variety of contexts that contribute to both conscious and nonconscious cognition (e.g., Del Cul et al. 2009; Miller 2000). Some cortical areas that are part of a default network, however, seem to play a role in monitoring the world exactly when we are not engaged (Christoff et al. 2009; Raichle and Snyder 2007; Raichle et al. 2001). They seem poised to make decisions about whether or not to engage, and perhaps it is a large enough system to support decisions to engage in certain ways. One consideration that plays a role in our thinking about cortical control is the constraint on wiring. It simply is not the case that a central structure can address the entire cortex, and we do not know of a switchboard in the brain, although matrix thalamus comes closest.

Language areas seem like obvious candidate structures for decisions to engage in a narrative way. Such areas might be targets of circuit selection or they might participate in decisions to engage for possible reporting or attaching narrative. A more inchoate expression of such functionality might reside in the association auditory cortex. Consider the prominence of audition in the examples mentioned earlier concerning arousal! It is intriguing that the evolution of auditory association cortex might parallel the capacities we invoke when we engage in the ways that touch on P-consciousness: attaching narrative, episodic/declarative context, pointing out a visual object to another individual.

The following coincidence may be of interest to some readers. Rhesus monkeys are notoriously difficult to train on high-level auditory tasks. They can localize and recognize calls, but we have had little success training them to make the kinds of arbitrary associations that are exemplified in the tasks described above. A monkey can make an eye movement to the location of a hidden speaker, but we have found it difficult to train monkeys to decide about the duration of intervals between clicks and indicate a choice with an eye movement. There may be many reasons for this, including our own ineptitude, but many researchers in the field are struck by the lack of auditory aptitude of macaques (Fritz et al. 2005). Coincidentally, monkeys seem to possess little parietal cortex devoted primarily to audition. Earlier, we mentioned three areas along the intraparietal sulcus that are devoted to vision-action associations but can be co-opted for more abstract visual perceptual decisions. These are somatosensory areas rostral to the sulcus. But as one moves toward the auditory cortex, the sulcus disappears. There is auditory input to parietal regions that are classically identified as visual association areas, whereas the remaining regions, near the temporo-parietal junction, project to the most rostral

9We have published and are now conducting several timing tasks, which are easier for humans when using sounds. Monkeys are far more proficient using intervals between visual cues.
pole of the prefrontal cortex (Kaas and Hackett 2000; Kaas et al. 1999; Poremba and Mishkin 2007; Poremba et al. 2003).

If the evolution of auditory association cortex remains delayed in the hominid branch of primata, maybe we can begin to recognize why language developed late and only in one hemisphere. And since there is no way to close our ears, perhaps we had to have more elaborate systems of decisions to engage based on stimulation. Perhaps our brains exploit this capacity to engage other systems. These are a few highly speculative justifications for the view that auditory association cortex and its thalamic targets might play a privileged role in decisions to engage. This is obviously not the only path to P-consciousness, but it may be one that is highly developed. And this is not to say that hearing must be intact to use this neural substrate (e.g., in deafness).

7 Limitations and Dividends of the Idea

The main shortcomings of the decision to engage idea are (1) it lacks a known mechanism, (2) it is probably involved in non-conscious as well as conscious processes, (3) its parallel “intentional” architecture fails to capture the unity of experience captured by conscious awareness, and (4) it does not explain the subjective “what it is like to be...” aspects of consciousness, including qualia. This is not a complete list, but it is enough to have a stab at.

(1) The mysterious step in the “decision to engage” is the mechanism underlying circuit selection. It is poorly understood in the simplest of perceptual decisions. That said, it is a mechanism, and the notion that it can be studied in simpler contexts is a dividend of the theory. We do not know how LIP “selects” neurons in the frontal eye field or superior colliculus, when a decision about motion leads to an eye movement, but the question is tractable. A decision to engage links neural mechanisms mediating N- and P-consciousness to the neurobiology of decision making. Put more bluntly, it is a testable idea about a mechanism. It does not assert that a mysterious function adds an incantation – be it synchrony or oscillations or power in a range of frequencies – to a representation, thus rendering it available to awareness. Even if rendering to awareness were marked by such an “incantation,” one would ask about the mechanisms in the brain that led to its application. If the answer is, “a decision to activate via matrix thalamus a set of cortical circuits that decide to use vision,” we would recognize a mechanism with similarities to others we are beginning to understand.

(2) Admittedly, decisions to engage are also shared by the organized behaviors that neither require nor reach the level of consciousness. We speculate that the difference is partially due to the brain structures that initiate the decision to engage (and perhaps whether such initiation is programmed by a conscious or unconscious mental process). Regardless of how the process is initiated, the
shared mechanism of decision-to-engage provides an opportunity to study consciousness. If we can understand how a decision about a simple sensory stimulus (e.g., noisy motion) leads to the selection of a motor circuit (e.g., in the frontal eye field and/or superior colliculus to plan or initiate an eye movement), we will have taken a step toward understanding a mechanism that could also engage other circuits that lead to exploration, pointing out to another being, communicating and attaching narrative.

(3) Decisions to engage in particular ways conform to a brain organization that lacks a central executive or global workspace with access to all functions. This may be limiting, or simply wrong, were it to turn out that such a central, integrative, organizing structure exists. Yet, we cannot think of a brain structure that could qualify as such a structure. Brain regions that project broadly (e.g., the locus coeruleus) lack the computational capacity—or even representational capacity—to serve as a central workspace for consciousness. We do not pretend to understand how a parallel architecture can support the unity of our experience, but we suspect it can be accounted for by a parallel organization viewed in the intentional framework. If perception is not so much a declaration of labels but answers to questions, posed serially or in parallel, about a place or time or relationship of places and times, then those answers have unity arising from the “aboutness” of the intention. Von Helmholtz held such an intentional view of space perception (von Helmholtz 1925). Merleau-Ponty expresses this view in the Phenomenology of Perception (Merleau-Ponty 1962).

(4) The mechanism alone fails to address the distinction between the personal, subjective aspects of consciousness—what is it like to be me; how do I experience red, love, sorrow, etc.; ownership of my feelings, perceptions and acts—from other less subjective aspects of awareness and agency. We surmise that these are different ways of engaging that involve different brain structures. We suspect that different ways of engaging the world have attributes that can facilitate or prevent subjective narratives and/or qualia. Qualia might arise when we engage in ways that involve social and communicative components, attach narrative context with declarative attributes (e.g., before, after, where, what else is present) and sensorimotor contingencies (O’Regan and Noé 2001). The subjective aspects of conscious experience are multi-faceted and complex, hence unlikely to be explained by a single process. The decision to engage is the first building block of a subjective conscious experience, not the entirety of it.

The main dividend to the notion of consciousness as a decision to engage is that it offers a glimpse of an actual neural mechanism that can be studied in a variety of contexts and model systems. If we wake up to sounds through a decision to engage, or if we decide to engage a distant object with a decision to report, say, via pointing to another, we can bring to bear what is already known about the neurobiology of perceptual decisions. We can ask whether the bounded accumulation of evidence in the posterior cingulate cortex (PCC), to choose one interesting example, leads to the activation of another cortical area, via intralaminar and matrix thalamus,
and whether this occurs once a threshold or bound is achieved by the firing rate of neurons in PCC.

Such consideration of putative mechanism contrasts with the traditional quest for a neural correlate of consciousness (NCC), which may well mark the presence of consciousness but which fails to explain its derivation. That said, our hypothesis is compatible with popular ideas about the NCC. If it so happens that power in a range of frequencies measured in local field potentials is a signature of conscious processing, then one ought to ask what is the mechanism that causes this physiological change. It could be the case that when matrix thalamus activates cortex, it leads to changes in the cortical microcircuit that are associated with increased power in the gamma band of frequencies measured in the LFP. We are not invested in this view but mention it as testimony to the compatibility of “decisions to engage” with existing theories and observations.

8 Concluding Remarks

The concept of a decision to engage links the neurobiology of consciousness to the field of decision making. It has the virtue of tying together characterizations of consciousness employed in clinical neurology with the phenomenology that we associate with the mind’s most precious pursuits. It may guide future experiments and, if correct, it would render broad areas of systems, cellular and molecular neuroscience relevant to the study of consciousness.

References

Consciousness as a Decision to Engage 45

von Helmholtz HLF (1925) Treatise on physiological optics. Dover, New York